Image classification via intermediate discriminative representation
نویسندگان
چکیده
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLearning discriminative spatial representation for image classification
Spatial Pyramid Representation (SPR) [7] introduces spatial layout information to the orderless bag-of-features (BoF) representation. SPR has become the standard and has been shown to perform competitively against more complex methods for incorporating spatial layout. In SPR the image is divided into regular grids. However, the grids are taken as uniform spatial partitions without any theoretic...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDiscriminative Collaborative Representation for Classification
The recently proposed l2-norm based collaborative representation for classification (CRC) model has shown inspiring performance on face recognition after the success of its predecessor — the l1-norm based sparse representation for classification (SRC) model. Though CRC is much faster than SRC as it has a closed-form solution, it may have the same weakness as SRC, i.e., relying on a “good” (prop...
متن کاملFast Fine-grained Image Classification via Weakly Supervised Discriminative Localization
Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among similar subcategories. However, existing methods generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.11.058